JOURNAL OF LABELLED COMPOUNDS AND RADIOPHARMACEUTICALS *J Label Compd Radiopharm* 2003; **46**: 365–372.

Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/jlcr.679

Research Article

Tritium-labelled 8-cyclopentyl-3-(3-fluoropropyl)-1-propylxanthine ([³H]CPFPX), a potent and selective antagonist for the A₁ adenosine receptor

Marcus H. Holschbach*, Walter Wutz, Manfred Schüller, Dirk Bier and H.H. Coenen

Institut für Nuklearchemie, Forschungszentrum Jülich GmbH, Jülich 52425, Germany

Summary

The reduction of 1-allyl-8-cyclopentyl-3-(3-fluoropropyl)xanthine, 7, with tritium gas catalyzed by 10% Pd-C gave 8-cyclopentyl-3-(3-fluoropropyl)-1-[2,3-³H]propylxanthine ([³H]CPFPX), **8***, a potent and selective antagonist for the A_1 adenosine receptor (A_1AR). The synthesis of 7 proceeded from 6-aminouracil, **1**, which underwent silylation and alkylation with allyl bromide to form 6-amino-3-allyluracil, **2**. Nitrosation led to the 5-nitroso compound, **3**, which underwent reduction to the 4,5-diaminouracil, **4**, and carbodiimide-mediated acylation with cyclopentanecarboxylic acid produced 3-allyl-6-amino-5-cyclopentylcarboxamidouracil, **6**. Alkylation at N-1 with 3-fluoro-1-bromopropane and cyclization with alkali completed the synthesis of **7**. [³H]CPFPX had a radiochemical purity of > 98% and a specific activity of > 2.1 TBq/mmol (57 Ci / mmol). [³H]CPFPX bound to the rat, pig and human A_1AR with a K_D of 0.63, 1.37 and 0.71 nM, respectively. The K_D at the rat and human A_2AAR was 812 and 940 nM, respectively, thus giving selectivities of > 1200- and > 700-fold. Copyright © 2003 John Wiley & Sons, Ltd.

Key Words: A₁ adenosine receptor; xanthines; adenosine antagonist ligand; tritiation

*Correspondence to: M.H. Holschbach, Institut für Nuklearchemie, Forschungszentrum Jülich GmbH, Jülich 52425, Germany. E-mail: m.holschbach@fz-juelich.de

Copyright © 2003 John Wiley & Sons, Ltd.

Introduction

The preclinical evaluation of 8-cyclopentyl-1-propyl-3-(3-[¹⁸F]fluoro-propyl)xanthine ([¹⁸F]CPFPX), a radioligand useful for imaging A₁ARs in the central nervous system (CNS) with positron emission tomography (PET), required the synthesis of the tritiated ligand to support *in vitro* binding studies to that receptor. This report describes the synthesis and tritiation of the precursor 1-allyl-8-cyclopentyl-3-(3-fluoropropyl) xanthine, 7. The affinity of the target radioligand [³H]CPFPX, **8***, for the A₁AR of 3 species, including man, was similar to that of the 'Gold Standard' antagonist ligand 8-cyclopentyl-1,3-dipropylxanthine (DPCPX).

Results and discussion

Scheme 1 summarizes the synthesis of 7, which began with commercially available 6-aminouracil, 1. Silylation and regioselective alkylation^{2,3} of *N*-3 with allyl bromide gave 3-allyl-6-aminouracil, 2. Nitrosation and reduction with sodium dithionite afforded the unstable 4,5-diaminouracil, 4, which underwent carbodiimide-mediated coupling with cyclopentanecarboxylic acid to form the 5-carboxamido derivative 5. Alkylation⁴ with 3-fluoro-1-bromopropane introduced a 3-fluoropropyl group at *N*-1 to give 6. Heating in alkaline solution led to the cyclization of 6 to yield 1-allyl-8-cyclopentyl-3-(3-fluoropropyl)xanthine, 7.

Reduction of the allyl group over 10% Pd/C in an atmosphere of tritium gas yielded the target compound, **8*** (Scheme 2). HPLC with two systems differing in both stationary and mobile phases showed that the product accounted for all of the radioactivity and >98% of the UV absorbance. The specific activity was >2.1 TBq/mmol (57 Ci/mmol) as determined by UV-signal comparison with a calibration curve. The radioligand was stable for at least 1 year when stored below -5° C in ethanolic solution.

Radioligand binding assays employed membranes from rat and pig cerebral cortices (rA₁AR and pA₁AR) and corpora striata (rA_{2A}AR and pA_{2A}AR) and also membranes from CHO cells stably expressing the human A₁AR (hA₁AR) or the A_{2A}AR (hA_{2A}AR). The K_D of [3 H]CPFPX at the three A₁ARs, as measured by equilibrium binding assays, was 0.63 (rA₁AR), 1.37 (pA₁AR) and 0.71 (hA₁AR) nM, respectively. [3 H]CPFPX bound to the rat and human A_{2A}AR with a

a: 1. HMDS, 2. allyl bromide; b: isoamyl nitrite; c: Na₂S₂O₄, NH₄OH; d: EDAC, cyclopentanecarboxylic acid; e: 1-bromo-3-fluoropropane, K₂CO₃; f: NaOH, heat

Scheme 1. Synthesis of precursor 7

a: [3H]H2, Pd / C, ethyl acetate

Scheme 2. Radiosynthesis of ligand 8*

 $K_{\rm D}$ of 812 and 940 nM, respectively. Thus, the A₁AR/A_{2A}AR selectivity ratios for [³H]CPFPX in the two species were > 1200 and > 700. By comparison, the affinity of [³H]DPCPX at the same receptors was 0.9 (rA₁AR), 2 (hA₁AR) and 470 (rA_{2A}AR) nM, respectively and the rA₁AR/rA_{2A} AR selectivity ratio was 520.

Copyright © 2003 John Wiley & Sons, Ltd. *J Label Compd Radiopharm* 2003; **46**: 365–372

Experimental

Materials

Melting points were measured on an ElectrothermalTM apparatus and are uncorrected. Elemental analyses were performed by the Zentralabteilung für Chemische Analysen at the Forschungszentrum Julich, and are within + 0.4% of the calculated composition. Mass spectra (MS). ESI, were obtained on a Finnigan Automass III mass spectrometer (Thermo Quest, Egelsbach). Thin layer chromatography (TLC) employed precoated silica sheets (4 × 8 cm, PolygramTM, Macherey-Nagel, Düren) developed with chloroform/methanol 90/10 (v/v). ¹Hand ¹³C NMR spectra were obtained at 200.13 and 50.32 MHz, respectively, by means of a Bruker DPX-200 spectrometer (Avance 200) in $\approx 5\%$ solution at 25°C. Chemical shifts are given in δ ppm using the residual proton signals of the appropriate deuterated solvents as a reference $(\delta_{H(CDCL_2)} = 7.30, \delta_{H(DMSO-d6)} = 2.52, \delta_{C(CDCL_2)} =$ $77.48\delta_{c(DMSO-d6)} = 40.38$). The multiplicity symbols s, d, t and m refer to singlet, doublet, triplet and multiplet, respectively. Sigma-Aldrich, Deisenhofen, provided reagents and solvents, which were of the highest purity offered, as well as DPCPX. CPFPX, 8, was prepared according to a published method.⁴ No-carrier-added tritium gas was obtained from NEN Life Sciences, Zaventem, Belgium, Analytical HPLC on a LiChrosphere RP C-18 5µm column eluted with CH₃CN/water, 50/50 (v/v) at a flow rate of 1 ml/min and monitoring UV absorbance of the effluent at 254 nm established the purity of precursor 7. In this system the capacity factor (k'-value) of 7 was 3.86. Semi-preparative radio-HPLC used a C-18 column (Multospher 120 5μm, 250 × 8 mm) eluted with acetonitrile/water, 50/50 (v/v) at a flow rate of 3 ml/min. In this system the k'-values of the precursor 7 and the unlabelled ligand 8 were 3.24 and 4.07, respectively. For continuous measurement of radioactivity the outlet of the UV detector was connected to a flow scintillation analyzer (RadiomaticTM 515 TR Series, Packard, Dreieich, Germany) and the recorded data were processed by an integrated software system. Quality control of the product employed a RP 18 Select B column (250 × 4 mm) eluted with acetonitrile/aqueous KH₂PO₄ (3.3 g/l), 70/30 (v/v) at a flow rate of 1 ml/min. Under these conditions the /(k'-value for 8^* was 2.03. A second system consisted of a Supersphere Si-60 column eluted with ethanol/hexane, 5/95 (vv) at a flow rate of 1 ml/min. Under these conditions the k'-value for 8^* was 2.51. Measurement of the specific activity of 8* used HPLC, which measured the mass of product by integrating the UV absorption of the product peak and referenced to a standard curve. The product peak was collected and an aliquot counted in a liquid scintillation counter.

3-Allyl-6-aminouracil, 2

A suspension of 6-aminouracil 1 (40 g, 0.314 mol) and (NH₄)₂SO₄ (2 g, 15 mmol) in hexamethyldisilazane (HMDS, 400 ml) was stirred at reflux (oil bath temperature $\sim 140^{\circ}$ C), until all the uracil had dissolved ($\sim 2 \text{ h}$). HMDS was distilled off, initially at normal pressure, later in vacuo. After cooling to 60°C allylbromide (30.4 ml, 0.349 mol) and iodine (300 mg) was added, the mixture was heated to reflux (oil bath temperature $\sim 115^{\circ}$ C) and stirred at that temperature for 1.5–2h. After cooling to room temperature the viscous syrup was carefully treated with a solution of Na₂S₂O₄ (6 g, 25 mmol) in water (20 ml) whereupon the syrup started to form reddish lumps. Under efficient stirring and external cooling with ice the solid was transferred portionwise into a solution of saturated aqueous NaHCO₃ (~800 ml). The suspension was stirred overnight at ambient temperature, filtered by suction, washed with water, toluene and ether and dried in a dessicator in vacuo over P₄O₁₀. Yield: 42.5 g, 87.4%, mp: 235–236°C (MeOH) (lit.²: 236°C). ¹H NMR (DMSO-d₆): 4.28 (d, 2 H, CH₂-N), 4.58 (s, 1 H, C⁵H), 5.04 (m, 2H, $CH_2 =$), 5.72 (m. 1H, C = CH), 6.35 (s_{br} , 2H, NH_2), 10.53 $(s_{br}, 1H, NH)$.

3-Allyl-6-amino-5-nitrosouracil, 3

Under argon 3-allyl-6-aminouracil **2** (8.4 g, 54 mmol) was suspended in a mixture of dry EtOH (43 ml) and ethanolic HCl (5 N, 33 ml, 165 mmol). When all of the uracil had dissolved the solution was cooled with ice/salt to -2° C and isoamyl nitrite (7.3 ml, 54.3 mmol) was added dropwise in such a way that the temperature remained below 0° C. After completion of the addition the reaction mixture was stirred at 0° C for 1h; during that time product started to precipitate. The solid was filtered by suction and air-dried (3.7 g). Concentrating the mother liquor to near dryness gave a second crop of product that was filtered off, washed with a small volume of ice cold EtOH and air dried (2.9 g). Yield: 6.6 g, 62%, mp:223–224°C (lit.³: 225°C).). ¹H NMR (DMSO-d6): 4.44 (d, 2 H, CH₂N), 5.14 (m, 2 H, CH₂=), 5.87 (m. 1 H, C=CH), 8.37 (s_{br}, 2 H, NH₂), 11.41 (s_{br}, 1 H, *NH*).

3-Allyl-6-amino-5-cyclopentylcarboxamidouracil, 5

Under argon the nitroso aminouracil 3 (9.8 g, 50 mmol) was dissolved in 12.5% NH₄OH (250 ml) at 70°C. Na₂S₂O₄ (ca 25 g) was added portionwise until the solution became cannary yellow. The reaction mixture was concentrated *in vacuo* until a solid started to precipitate and the mixture was cooled in ice for 6 h. The air sensitive solid was rapidly filtered by suction and dried in a dessicator *in vacuo*. After drying for 2 h the diamine 4 (6.7 g, 37 mmol, 74%) was used immediately for the next step.

A suspension of the diamine **4** (6.7 g, 37 mmol), *N*-(3-dimethylaminopropyl)-*N'*-ethyl-carbodiimide (7.5 g, 40.7 mmol, 1.1 eq.) and cyclopentanecarboxylic acid (4.5 g, 40.7 mmol, 1.1 eq.) in MeOH/H₂0 (1/1, 240 ml) was stirred at room temperature overnight. The solid was filtered off, washed with a small volume of water and MeOH and air dried. Yield 8.06 g, 78%, mp: 279°C. ¹H NMR (DMSO-d₆): 1.72 (m, 8 H, cp-CH₂), 2.75 (m, 1 H, cp-H), 4.29 (d, 2 H, CH₂N), 5.03 (m, 2 H, CH₂=), 5.82 (m, 1 H, C=CH), 5.87 (s_{br}, 2 H, NH₂), 8.29 (s, 1 H, amide-NH), 10.46 (s_{br}, 1 H, NH). m/e 278 (100%). Elemental analysis (FW 278.31): calculated: C 56.10; H 6.52; N 20.13; found: C 56.19; H 6.52; N 20.07.

3-Allyl-6-amino-1 -(3-fluoropropyl)-5-cyclopentanecarboxamidouracil, 6

Under argon the amide 5 (5.59 g, 20 mmol) was dissolved in dry DMF (80 ml). Finely ground K₂CO₃ (2.76 g, 20 mmol) was added and the mixture was stirred for 30 min at ambient temperature. A solution of 1bromo-3-fluoropropane (2.82 g, 1.83 ml, 20 mmol) in dry DMF (20 ml) was added dropwise via a syringe and the mixture was stirred for 72 h at room temperature. The mixture was filtered and the filtrate concentrated in vacuo to $\sim 10 \,\mathrm{ml}$. The residue was taken up in ethyl acetate (75 ml), dried over anhydrous Na₂SO₄, filtered and evaporated to dryness in vacuo. The solid residue was recrystallized from CH₃CN. Yield: 3.52 g, 52%, mp.: 194°C. ¹H NMR (CDCI₃): 1.72 (m, 10 H, cp-CH₂ + CH₂-CH₂F), 2.79 (m, 1 H, cp-H), 3.67 $(m, 2H, CH_2N^1), 4.04 (t, 2H, CH_2N^3), 4.44 (m, 2H, CH_2F), 5.12 (m,$ $2 \text{ H}, \text{ CH}_2 =$), 5.85 (m. 1 H, C = CH), 6.71 (s_{br} , 2 H, NH₂), 8.04 (s, 1 H, amide-NH). m/e 338 (100%). Elemental analysis (FW 278.31): calculated: C 56.79; H 6.85; N 16.56; found: C 56.81; H 6.87; N 16.51.

1 - Allyl-8-cyclopentyl-3-(3-fluoropropyl)xanthine, 7

The fluoropropyl amide 6 (1 g, 3 mmol) was refluxed for 3 h in a mixture of MeOH (100 ml) and 20% NaOH_{aq} (20 ml, 100 mmol). After cooling to room temperature the reaction mixture was acidified to pH 4 with cone HCI and the white precipitate (NaCl) was filtered off. MeOH was evaporated off and the residue was diluted with H₂O (50 ml). The aqueous phase was extracted with dichloromethane $(2 \times 75 \,\mathrm{ml})$, the pooled organic phases were dried over anhydrous Na₂SO₄, filtered and the filtrate was evaporated to dryness. The residue was purified by column chromatography on silica gel 60 using DCM/MeOH 88/12 (v/v) as an eluent. The fraction containing the product was collected, solvents were evaporated and the solid residue was recrystallized from CH₃CN. Yield 116 mg, 12%, mp: 201°C. For the tritiation an aliquot of 7 was further purified by HPLC and gave material of > 99% purity. ¹H NMR $(CDCl_3)$: 1.96 (m, 10 H, cp-CH₂ + CH₂-CH₂F), 3.32 (m, 1 H, cp-H), 4.34 (t, 2 H, CH₂N³), 4.48 (t, 2 H, CH₂N¹), 4.72 (m, 2 H, CH₂F), 5.23 (m $2 \text{ H}, \text{ CH}_2 =$), 5.95 (m, 1 H, C=CH), 12.60 (s_{br}, 1 H, NH). m/e 320 (100%). Elemental analysis (FW 320.16): calculated: C 59.99; H 6.61; N 17.49; found: C 59.94; H 6.67; N 17.51.

8-Cyclopentyl-3-(3-fluoropropyl)-1-[2,3-3H]propylxanthine 8*

In the 2.5 ml reaction vessel of a tritiation device⁵ was placed a solution of 1-allyl-8-cyclopentyl-3-(3-fluoropropyl)xanthine 7 (3 mg, 9.3 μmol) in dry ethyl acetate (1 ml). Palladium on charcoal (10%, 2.2 mg) was added and the vessel was connected to the tritiation apparatus, which was evacuated and flushed with helium (two cycles) before the reaction mixture was carefully degassed (two freeze/thaw cycles). [3H]H₂ (1 Ci, 0.4 ml, 18 µmol) was transferred to the reaction flask by means of a Toeppler pump (three transfer cycles) and the reaction was allowed to proceed with efficient stirring for 6 h at room temperature. The reaction mixture was degassed (two freeze/thaw cycles) and the catalyst was removed by filtration through a syringe filter (Millipore FH, 0.5 μm, 4 mm diameter). The filter was washed with acetone $(4 \times 1 \text{ ml})$, the organic filtrates were pooled and labile tritium was removed by adding EtOH (6 ml) and evaporation of the solvents under reduced pressure at 60°C. This cycle was repeated twice. The residue was taken up in CH₃CN (1.6 ml) and water (1ml) and was purified by semi-preparative HPLC. The fractions containing 8* were collected, pooled and

evaporated to dryness at 60°C under reduced pressure. The product (495 mCi) was taken up in EtOH (6 ml) and aliquots were analyzed by liquid scintillation counting. Quality control revealed a radiochemical purity of 98% and a specific activity of > 2.1 TBq/mmol (57 Ci/mmol).

References

- 1. Holschbach MH, Olsson RA, Bier D, et al. J Med Chem 2002; **45**: 5150–5156.
- 2. Müller CE. Tetrahedon Letter 1991; 32: 6539-6540.
- 3. Müller C.E. Synthesis 1993; 125-128.
- 4. Holschbach MH, Fein T, Krummeich C, et al. J Med Chem 1998; **41**: 555–563.
- Kingston LP, Lockley WJS, Mather AN, Wilkinson DJ, Hesk D, Jones JR. A versatile apparatus for the synthesis of high specific activity tritiated compounds. In *Synthesis and Applications of Isotopically Labelled Compounds* 1994, Allen J(ed.). Wiley: New York, 1995; 57–60.